Fast Geometric Sound Propagation with Finite-Edge Diffraction

نویسندگان

  • Lakulish Antani
  • Anish Chandak
  • Micah Taylor
  • Dinesh Manocha
چکیده

We present a fast algorithm to perform sound propagation in complex 3D scenes. Our approach computes propagation paths from each source to the listener by taking into account specular reflections and higher-order edge diffractions around finite edges in the scene. We use the well known Biot-Tolstoy-Medwin diffraction model along with efficient algorithms for region-based visibility to cull away primitives and significantly reduce the number of edge pairs that need to be processed. The performance of region-based visibility computation is improved by using a fast occluder selection algorithm that can combine small, connected triangles to form large occluders and perform conservative computations at objectspace precision. We show that our approach is able to reduce the number of visible primitives considered for sound propagation by a factor of 2 to 4 for second order edge diffraction as compared to prior propagation algorithms. We demonstrate and analyze its performance on multiple benchmarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Accurate Geometric Sound Propagation using Visibility Computations

Geometric Acoustics (GA) techniques based on the image-source method, ray tracing, beam tracing, and ray-frustum tracing, are widely used to compute sound propagation paths. In this paper, we highlight the connection between these propagation techniques with the research on visibility computation in computer graphics and computational geometry. We give a brief overview of visibility algorithms ...

متن کامل

Fast Edge-diffraction for Sound Propagation in Complex Virtual Environments

We present an algorithm for fast computation of diffraction paths for geometric-acoustics in complex environments based on the UTD formulation. Our method extends ray-frustum tracing to efficiently compute paths in the shadow region caused by long diffracting edges. Our approach can handle general scenes with moving sources, receivers, and dynamic objects. We evaluate the accuracy through compa...

متن کامل

Interactive Geometric Sound Propagation and Rendering

We describe a novel algorithm and system for sound propagation and rendering in virtual environments and media applications. Our approach uses geometric propagation techniques for fast computation of propagation paths from a source to a listener and takes into account specular reflections, diffuse reflections, and edge diffraction. In order to perform fast path computation, we use a unified ray...

متن کامل

Interactive Edge-Diffraction for Sound Propagation in Complex Virtual Environments

We present an algorithm for interactive computation of diffraction paths for geometric-acoustics in complex environments. Our method extends ray-frustum tracing [Lauterbach et al. 2007] to efficiently compute volumetric regions of the sound field caused by long diffracting edges. We compute accurate diffraction paths from each source to the listener and based on the Uniform Theory of Diffractio...

متن کامل

Sound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length

   In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009